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ABSTRACT: In this paper, we define a property called 

Matric Space property and using this property, we obtain 

a unique common fixed point for weakly compatible 

self-mappings of Uniform Space. In this work, we define 

the nearly uniform convexity and the D-uniform 

convexity in metric spaces, and prove their equivalence. 

We also prove the nonlinear version of some classical 

results related to nearly uniformly convex metric spaces. 
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INTRODUCTION 

In 1987 [1], Angelov introduced the notion of Φ-

contractions on Hausdorff uniform spaces, which 

simultaneously generalizes the well-known Banach 

contractions on metric spaces as well as γ-contractions 

[2] on locally convex spaces, and he proved the 

existence of their fixed points under various conditions. 

Later in 1991 [3], he also extended the notion of Φ-

contractions to j-nonexpansive maps and gave some 

conditions to guarantee the existence of their fixed 

points. However, there is a minor flaw in his proof of 

Theorem 1 [3] where the surjectivity of the map j is 

implicitly used without any prior assumption. 

In the mathematical field of topology, a uniform 

space is a set with a uniform structure. Uniform spaces 

are topological spaces with additional structure that is 

used to define uniform properties such 

as completeness, uniform continuity and uniform 

convergence. 

The conceptual difference between uniform 

and topological structures is that in a uniform space, one 

can formalize certain notions of relative closeness and 

closeness of points. In other words, ideas like "x is closer 

to a than y is to b" make sense in uniform spaces. By 

comparison, in a general topological space, given 

sets A,B it is meaningful to say that a point x is 

arbitrarily close to A (i.e., in the closure of A), or 

perhaps that A is a smaller neighborhood of x than B, but 

notions of closeness of points and relative closeness are 

not described well by topological structure alone. 

Uniform spaces generalize metric spaces and  

 

topological groups and therefore underlie most 

of analysis. 

 

Definition: 

There are three equivalent definitions for a uniform 

space. They all consist of a space equipped with a 

uniform structure. 

Entourage definition 

A nonempty collection Φ of 

subsets  is a uniform structure if it 

satisfies the following axioms: 

1. If ,then ,where

 is the diagonal 

on . 

2. If  and  for , 

then . 

3. If  and , then . 

4. If , then there is  such 

that , where  denotes the 

composite of  with itself. (The composite of two 

subsets  and  of  is defined.) 

5. If  ,then  , 

where  is 

the inverse of U. 

Properties (2) and (3) state that Φ is a filter. If the last 

property is omitted we call the space quasiuniform. The 

elements U of Φ are called entourages from the French 

word for surroundings. 

One usually writes U[x]={y : (x,y)∈U}. On a graph, a 

typical entourage is drawn as a blob surrounding the 

"y=x" diagonal; theU[x]’s are then the vertical cross-

sections. If (x,y) ∈ U, one says that x and y are U-close. 

Similarly, if all pairs of points in a subset A of X are U-

close (i.e., if A × A is contained in U), A is called U-

small. An entourage U is symmetric if (x,y) ∈ Uprecisely 

when (y,x) ∈ U. The first axiom states that each point 

is U-close to itself for each entourage U. The third axiom 

guarantees that being "both U-close and V-close" is also 

a closeness relation in the uniformity. The fourth axiom 

states that for each entourage U there is an 

entourage V that is "not more than half as large". Finally, 

the last axiom states that the property "closeness" with 

respect to a uniform structure is symmetric in x and y. 

A fundamental system of entourages of a uniformity Φ 

is any set B of entourages of Φ such that every entourage 

of Ф contains a set belonging to B. Thus, by property 2 
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above, a fundamental systems of entourages B is enough 

to specify the uniformity Φ unambiguously: Φ is the set 

of subsets of X × X that contain a set of B. Every uniform 

space has a fundamental system of entourages consisting 

of symmetric entourages. 

Intuition about uniformities is provided by the example 

of metric spaces: if (X, d) is a metric space, the sets form 

a fundamental system of entourages for the standard 

uniform structure of X. 

 
Then x and y are Ua-close precisely when the distance 

between x and y is at most a. 

A uniformity Φ is finer than another uniformity Ψ on the 

same set if Φ ⊇ Ψ; in that case Ψ is said to 

be coarser than Φ. 

Pseudometrics definition 

Uniform spaces may be defined alternatively and 

equivalently using systems of pseudometrics, an 

approach that is particularly useful in functional 

analysis (with pseudometrics provided by seminorms). 

More precisely, let f: X × X → R be a pseudometric on a 

set X. The inverse images Ua = f
−1

([0,a]) for a > 0 can be 

shown to form a fundamental system of entourages of a 

uniformity. The uniformity generated by the Ua is the 

uniformity defined by the single pseudometric f. Certain 

authors call spaces the topology of which is defined in 

terms of pseudometrics gauge spaces. 

For a family (fi) of pseudometrics on X, the uniform 

structure defined by the family is the least upper 

bound of the uniform structures defined by the individual 

pseudometrics fi. A fundamental system of entourages of 

this uniformity is provided by the set 

of finite intersections of entourages of the uniformities 

defined by the individual pseudometrics fi. If the family 

of pseudometrics is finite, it can be seen that the same 

uniform structure is defined by a single pseudometric, 

namely the upper envelope sup fi of the family. 

Less trivially, it can be shown that a uniform structure 

that admits a countable fundamental system of 

entourages (and hence in particular a uniformity defined 

by a countable family of pseudometrics) can be defined 

by a single pseudometric. A consequence is 

that any uniform structure can be defined as above by a 

(possibly uncountable) family of pseudometrics (see 

Bourbaki: General Topology Chapter IX §1 no. 4). 

 

Uniform cover definition 

A uniform space (X,Θ) is a set X equipped with a 

distinguished family of coverings Θ, called "uniform 

covers", drawn from the set of coverings of X, that form 

a filter when ordered by star refinement. One says that a 

cover P is a star refinement of cover Q, written P <* Q, 

if for every A ∈ P, there is a U ∈ Q such that if A ∩ B ≠ 

ø, B ∈ P, then B ⊆ U. Axiomatically, this reduces to: 

{X} is a uniform cover (i.e. {X} ∈ Θ). 

If P <* Q and P is a uniform cover, then Q is also a 

uniform cover. 

If P and Q are uniform covers, then there is a uniform 

cover R that star-refines both P and Q. 

Given a point x and a uniform cover P, one can consider 

the union of the members of P that contain x as a typical 

neighborhood of x of "size" P, and this intuitive measure 

applies uniformly over the space. 

Given a uniform space in the entourage sense, define a 

cover P to be uniform if there is some entourage U such 

that for each x ∈ X, there is an A ∈ P such that U[x] ⊆ A. 

These uniform covers form a uniform space as in the 

second definition. Conversely, given a uniform space in 

the uniform cover sense, the supersets of 

⋃{A × A : A ∈ P}, as P ranges over the uniform covers, 

are the entourages for a uniform space as in the first 

definition. Moreover, these two transformations are 

inverses of each other. 

 

Topology Uniform Spaces 

Every uniform space X becomes a topological space by 

defining a subset O of X to be open if and only if for 

every x in O there exists an entourage V such that V[x] is 

a subset of O. In this topology, the neighborhood filter of 

a point x is {V[x] : V∈Φ}. This can be proved with a 

recursive use of the existence of a "half-size" entourage. 

Compared to a general topological space the existence of 

the uniform structure makes possible the comparison of 

sizes of neighborhoods: V[x] and V[y] are considered to 

be of the "same size". 

The topology defined by a uniform structure is said to 

be induced by the uniformity. A uniform structure on a 

topological space is compatible with the topology if the 

topology defined by the uniform structure coincides with 

the original topology. In general several different 

uniform structures can be compatible with a given 

topology on X. 

Uniformizable spaces 

A topological space is called uniformizable if there is a 

uniform structure compatible with the topology. Every 

uniformizable space is a completely regular topological 

space. Moreover, for a uniformizable space X the 

following are equivalent: 

X is a Kolmogorov space 

X is a Hausdorff space 

X is a Tychonoff space 

for any compatible uniform structure, the intersection of 

all entourages is the diagonal {(x, x) : x in X}. 

Some authors (e.g. Engelking) add this last condition 

directly in the definition of a uniformizable space. The 

topology of a uniformizable space is always a symmetric 

topology; that is, the space is an R0-space. 

Conversely, each completely regular space is 

uniformizable. A uniformity compatible with the 

topology of a completely regular space X can be defined 
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as the coarsest uniformity that makes all continuous real-

valued functions on X uniformly continuous. A 

fundamental system of entourages for this uniformity is 

provided by all finite intersections of sets (f × f)
−1

(V), 

where f is a continuous real-valued function 

on X and V is an entourage of the uniform space R. This 

uniformity defines a topology, which is clearly coarser 

than the original topology of X; that it is also finer than 

the original topology (hence coincides with it) is a 

simple consequence of complete regularity: for 

any x ∈ X and a neighbourhood V of x, there is a 

continuous real-valued function f with f(x)=0 and equal 

to 1 in the complement of V. 

In particular, a compact Hausdorff space is 

uniformizable. In fact, for a compact Hausdorff 

space X the set of all neighbourhoods of the diagonal 

in X × X form the unique uniformity compatible with the 

topology. 

A Hausdorff uniform space
[clarification needed]

 is metrizable if 

its uniformity can be defined by a countable family of 

pseudometrics. Indeed, as discussed above, such a 

uniformity can be defined by a single pseudometric, 

which is necessarily a metric if the space is Hausdorff. In 

particular, if the topology of a vector space is Hausdorff 

and definable by a countable family of seminorms, it is 

metrizable. 

 

Uniform continuity 

Similar to continuous functions between topological 

spaces, which preserve topological properties, are 

the uniform continuous functions between uniform 

spaces, which preserve uniform properties. Uniform 

spaces with uniform maps form a category. 

An isomorphism between uniform spaces is called 

a uniform isomorphism. 

A uniformly continuous function is defined as one where 

inverse images of entourages are again entourages, or 

equivalently, one where the inverse images of uniform 

covers are again uniform covers.All uniformly 

continuous functions are continuous with respect to the 

induced topologies. 

 

Completeness 
Generalizing the notion of complete metric space, one 

can also define completeness for uniform spaces. Instead 

of working with Cauchy sequences, one works 

with Cauchy filters (or Cauchy nets). 

A Cauchy filter F on a uniform space X is 

a filter F such that for every entourage U, there 

exists A∈F with A×A ⊆ U. In other words, a filter is 

Cauchy if it contains "arbitrarily small" sets. It follows 

from the definitions that each filter that converges (with 

respect to the topology defined by the uniform structure) 

is a Cauchy filter. A Cauchy filter is called minimal if it 

contains no smaller (i.e., coarser) Cauchy filter (other 

than itself). It can be shown that every Cauchy filter 

contains a unique minimal Cauchy filter. The 

neighbourhood filter of each point (the filter consisting 

of all neighbourhoods of the point) is a minimal Cauchy 

filter. 

Conversely, a uniform space is called complete if every 

Cauchy filter converges. Any compact Hausdorff space 

is a complete uniform space with respect to the unique 

uniformity compatible with the topology. 

Complete uniform space enjoy the following important 

property: if f: A → Y is a uniformly continuous function 

from a densesubset A of a uniform space X into 

a complete uniform space Y, then f can be extended 

(uniquely) into a uniformly continuous function on all 

of X. 

A topological space that can be made into a complete 

uniform space, whose uniformity induces the original 

topology, is called a completely uniformizable space. 

 

Hausdorff completion of a uniform space 

As with metric spaces, every uniform space X has 

a Hausdorff completion: that is, there exists a complete 

Hausdorff uniform space Y and a uniformly continuous 

map i: X → Y with the following property: for any 

uniformly continuous mapping f of X into a complete 

Hausdorff uniform space Z, there is a unique uniformly 

continuous map g: Y → Z such that f = gi. 

The Hausdorff completion Y is unique up to 

isomorphism. As a set, Y can be taken to consist of 

the minimal Cauchy filters onX. As the neighbourhood 

filter B(x) of each point x in X is a minimal Cauchy 

filter, the map i can be defined by mapping x toB(x). The 

map i thus defined is in general not injective; in fact, the 

graph of the equivalence relation i(x) = i(x ') is the 

intersection of all entourages of X, and thus i is injective 

precisely when X is Hausdorff. 

The uniform structure on Y is defined as follows: for 

each symmetric entourage V (i.e., such that (x,y) is 

in V precisely when (y,x) is in V), let C(V) be the set of 

all pairs (F,G) of minimal Cauchy filters which have in 

common at least one V-small set. The sets C(V) can be 

shown to form a fundamental system of entourages; Y is 

equipped with the uniform structure thus defined. 

The set i(X) is then a dense subset of Y. If X is 

Hausdorff, then i is an isomorphism onto i(X), and 

thus X can be identified with a dense subset of its 

completion. Moreover, i(X) is always Hausdorff; it is 

called the Hausdorff uniform space associated with X. 

If R denotes the equivalence relation i(x) = i(x '), then the 

quotient space X/R is homeomorphic to i(X). 

Example 

Every metric space (M, d) can be considered as a 

uniform space. Indeed, since a metric is a fortiori a 

pseudometric, the pseudometric 

definition furnishes M with a uniform structure. A 
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fundamental system of entourages of this uniformity is 

provided by the sets 

 
This uniform structure on M generates the usual metric 

space topology on M. However, different metric spaces 

can have the same uniform structure (trivial example is 

provided by a constant multiple of a metric). This 

uniform structure produces also equivalent definitions 

of uniform continuity and completeness for metric 

spaces. 

Using metrics, a simple example of distinct uniform 

structures with coinciding topologies can be constructed. 

For instance, let d1(x,y) = | x − y | be the usual metric 

on R and let d2(x,y) = | e
x
 − e

y
 |. Then both metrics 

induce the usual topology on R, yet the uniform 

structures are distinct, since { (x,y) : | x − y | < 1 } is an 

entourage in the uniform structure for d1 but not for d2. 

Informally, this example can be seen as taking the usual 

uniformity and distorting it through the action of a 

continuous yet non-uniformly continuous function. 

Every topological group G (in particular, 

every topological vector space) becomes a uniform space 

if we define a subset V of G × G to be an entourage if 

and only if it contains the set { (x, y) : x⋅y−1
 in U } for 

some neighborhood Uof the identity element of G. This 

uniform structure on G is called the right 

uniformity on G, because for every a in G, the right 

multiplication x → x⋅a is uniformly continuous with 

respect to this uniform structure. One may also define a 

left uniformity on G; the two need not coincide, but they 

both generate the given topology on G. 

For every topological group G and its subgroup H the set 

of left cosets G/H is a uniform space with respect to the 

uniformity Φ defined as follows. The 

sets 

where U runs over neighborhoods of the identity in G, 

form a fundamental system of entourages for the 

uniformity Φ. The corresponding induced topology 

on G/H is equal to the quotient topology defined by the 

natural map G → G/H. 

Main Results  

Theorem 3.1. Let X be a real uniformly smooth Banach 

space with modulus of smoothness of power type 𝑞>1. 

Let K be a nonempty, closed convex and bounded subset 

of X. Suppose 𝑇∶ 𝐾→ (𝐾) is a multi-valued quasi-

contractive mapping and has fixed point p. Let  

(i) 𝑐 ≥ 1, –1 ≥ 𝑐𝑘𝑞, 

where c is the constant appearing in (2.1). Let 𝛼𝑛 and 𝛽𝑛 

real sequences in [0,1] satisfying the condition:  

       (ii) αn= ∞,∞𝑛=1 

(iii) limn→∞𝛽𝑛 = 0 

(iv) 𝑐𝛼𝑛𝑞−1−𝑐𝑘𝑞𝛽𝑛 𝑞−1 ≤1−𝑐𝑘𝑞, 

(v) 𝑐𝛽𝑞 –1≤2–𝑐𝑘𝑞2. 

Then for any 𝑥0 𝜖  , the sequence {𝑥𝑛} defined by (B) 

converges to a fixed point of T.  

Proof  

Let p be fixed point of T then by using Lemma 2.2 and 

(B), we have Fixed Point Iterations for Multi-valued 

Mapping in Uniformly Smooth Banach Space5  

║𝑥𝑛+1 – 𝑝║𝑞 = ║ 1–𝛼𝑛 𝑥𝑛+ 𝛼𝑛𝑧𝑛 ′– 𝑝║𝑞 ≤ 1 – 𝛼𝑛 𝑞 – 

1 ║𝑥𝑛– 𝑝║𝑞+ 𝑐𝛼𝑛║𝑧′’– 𝑝║𝑞 −𝛼𝑛 1−𝛼𝑛𝑞−1 ║𝑥𝑛– 

𝑧𝑛′║𝑞.  (3.2) 

Again ║𝑧𝑛′– 𝑝║= 𝑑 𝑝,𝑦𝑛 ≤max𝑑 𝑧,𝑇𝑦𝑛 𝑧 𝜖 𝑇𝑝 ≤ 𝐻 

𝑇𝑝,𝑇𝑦𝑛 .  

Therefore,  

║𝑧𝑛′– 𝑝║𝑞= 𝐻𝑞 𝑇𝑝,𝑦𝑛 ≤𝑘𝑞𝑚𝑎𝑥 ║𝑦𝑛– 𝑝║𝑞,𝑑𝑞 𝑦𝑛,𝑇𝑦𝑛 

,𝑑𝑞 𝑝,𝑇𝑦𝑛 3.2  

If dq(p, Tyn) is maximum, then  

Hq(Tp,Tyn) ≤ kqdq(p,Tyn ≤kqmax𝑑𝑞 𝑧,𝑇𝑦𝑛 𝑧 𝜖 𝑇𝑝 

≤kqHq Tp,Tyn ,  

so that 0 ≤ ║𝑧𝑛′ –𝑝║𝑞 ≤ 𝐻𝑞(𝑇𝑝,𝑇𝑦𝑛) = 0. Hence, from 

(3.2),  

we get always ║𝑧𝑛′– 𝑝║≤ 𝐾𝑞𝑚𝑎𝑥 ║𝑦𝑛– 𝑝║𝑞,𝑑𝑞 

𝑦𝑛,𝑇𝑦𝑛 , ≤𝑘𝑞[║𝑦𝑛– 𝑝║𝑞+𝑑𝑞 𝑦𝑛,𝑇𝑦𝑛 ] (3.3) Using 

Lemma 2.2, (3.3) and (B), we have  

║yn – p║q = ║ 1 –βn xn + βnzn – p║q ≤(1 – βn q – 1 

║xn – p║q + βnc║zn – p║q – βn 1– βnq–1c ║xn – zn║q 

(3.4)  

dq yn,Tyn ≤ ║yn – zn′ ║q ≤ ║ 1 – βn xn + βnzn – zn′ ║q 

≤ (1–βn q – 1 ║xn – zn′ ║q + βnc║zn – zn′ ║q – βn 1–

βnq – 1c ║xn – zn║q. (3.5)  

Using (3.3),(3.4) and (3.5), we have  

║zn, – p║q ≤ kq (1 –βn q – 1 ║xn – p║q+ kqβnc║zn – 

p║q + kqβnc║zn – zn′ ║q kq 1 – βn q – 1 ║xn – zn′ ║q 

– 2kqβn 1 – βnq– 1 c ║xn – zn║q. (3.6)  

Similar to the inequality (3.3), we get that  

║zn – p║q = dq p,Txn ≤ Hq Tp,Txn ≤ kq[║xn – p║q + 

dq(xn,Txn)]. (3.7)  

From (3.6) and (3.7), we get  

║ zn′ – p║q ≤ kq║xn – p║ + kq βnc║zn – zn′ ║q + kq 1 

– βn q−1 ║xn – zn′ ║q – kqβn 2 – 2βnq – 1c – ckq dq 

xn,Txn . (3.8) 

 From (3.1) and (3.8), we have  

║xn+1 – p║q 1 – αn (q – 1) ║xn – p║q – αn (1– αnq – 

1c) +cαn[kq║xn – p║+ kqβnc║zn – zn′ ║q + kq 1 – βn q 

– 1 ║xn – zn′ ║q − kqβn 2 – 2βnq– 1c – ckq dq(xn,Txn)] 

≤ 1 – αn q – 1– ckq ║xn – p║q c2αnβnkq║zn – zn║q 

−ckqαn βn 2 – 2 βnq–1c – ckq dq xn,Txn −αn 1– αnq – 1 

ckq 1– βn q – 1 ║xn – zn′ ║ . (3.9)  

As 𝛽𝑛 → 0 as 𝑛 → ∞, there exists a positive integer 𝑁1 

such that cβnq– 1≤2−ckq2 ∀ n ≥ 𝑁1  

so that  

2 – 2 βnq– 1c – ckq ≥ 0 ∀ n ≥ 𝑁1.  

Fixed Point Iterations for Multi-valued Mapping in 

Uniformly Smooth Banach Space7  

Also we have  

𝛼𝑛𝑞−1𝑐−𝑐𝑘𝑞𝛽𝑛 𝑞−1 ≤1−𝑐𝑘𝑞, Implies that 

1−𝛼𝑛𝑞−1𝑐−𝑐𝑘(1−𝛽𝑛 𝑞−1 ≥0, For all 𝑛 ≥ 𝑁1.  
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https://en.wikipedia.org/wiki/Complete_metric_space
https://en.wikipedia.org/wiki/Topological_group
https://en.wikipedia.org/wiki/Topological_vector_space
https://en.wikipedia.org/wiki/Neighbourhood_(topology)
https://en.wikipedia.org/wiki/Identity_element
https://en.wikipedia.org/wiki/Uniform_space#Uniform_continuity
https://en.wikipedia.org/wiki/Coset
https://en.wikipedia.org/wiki/Quotient_topology


International Journal of Applied and Universal Research                                ISSN No: 2395-0269 

Volume III, Issue II, Mar-Apr. 2016 Available online at: www.ijaur.com 

 

35 | P a g e  

 

Consequently, from (3.9), we get that for sufficiently 

large n  

║xn+1 – p║q≤ 1−αn q−1−ckq ║xn– p║q +αnβnc2kqD, 

(3.10)  

Where D is the diameter of C. Now by using lemma 2.3, 

the sequence {xn} converges top as n → ∞.  

Remark 3.2  

For Hilbert spaces 𝑞=2 𝑎𝑛𝑑 𝑐=1, so that if we set 𝑞=2 

𝑎𝑛𝑑 𝑐=1 in Theorem 3.1, then condition (𝑞– 1– 𝑐𝑘𝑞) 

reduces to (1– 𝑘2) < 1. Moreover, conditions (iii), (iv), 

and (v) reduce to exactly the same condition of theorem 

9 of Sastry and Babu [17].  

Theorem 3.3 Let X be a real uniformly smooth Banach 

space with modulus of smoothness of power type 𝑞 > 1. 

Let k be a closed convex and bounded subset of X. 

Suppose 𝑇∶ 𝐾 → 𝑃 (𝐾) is a quasi-contractive and has 

fixed point p. Let 𝛼𝑛 be a real sequence satisfying:  

(i) 𝑖 0≤𝛼𝑛<1𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛≥0  

(ii) lim𝑛→∞𝛼𝑛=0,  

(iii) 𝛼𝑛=∞,∞𝑛=0  

Then the sequence 𝑥𝑛 defined by (A), converges to a 

fixed point of T.  

Proof.  

By using Lemma 2.2 and (A), we get  

║xn+1 – p║q=║ 1−αn xn+αnun– p║q ≤ 1−αn q−1 ║xn– 

p║q+αnc║un– p║q −𝛼𝑛 1−𝛼𝑛𝑞−1𝜆 ║xn−un║q (3.11)  

Similar to inequality, we get  

║un– p║q=dq p,Txn ≤𝐻𝑞 𝑇𝑝,𝑇𝑥𝑛 ≤𝑘𝑞║xn– p║q+dq 

xn,Txn . (3.12) Then From (3.11) and (3.12),  

we get  

║xn+1 – p║q(1−αn q1 ║xn– p║qαnckq║xn– p║q 

+𝑐𝛼𝑛𝑘𝑞𝑑𝑞 𝑥𝑛,𝑇𝑥𝑛 −𝛼𝑛 1−𝛼𝑛𝑞−1𝑐 ║un−xn║q ≤ 1−∝𝑛 

𝑞−1−𝑐𝑘𝑞 ║xn– p║q −∝𝑛 1−𝑐∝𝑛𝑞−1−𝑐𝑘𝑞 𝑑𝑞 𝑥𝑛,𝑇𝑥𝑛 . 

(3.13)  

Condition (ii) implies for some 𝑁0 sufficient large  

𝑁0 𝜖 𝑁, 1−𝛼𝑛 𝑞−1−𝑐𝑘𝑞 < 1−𝛼𝑛 𝑞−1−𝑐𝑘𝑞 ≥0 so that 

from (3.13),  

we have ║xn+1 – p║q≤ 1−∝𝑛 𝑞−1−𝑐𝑘𝑞 ║xn– p║q. 

(3.14)  

Iteration of inequality (3.14) from 𝑗=𝑁0 𝑡𝑜 𝑁 yields, 

║xN+1p║q≤𝜫𝑱=𝑵𝟎(1−αj(q−1ckq))║x0– p║q→0 as 

n→∞ by condition (iii). Hence 𝑥𝑛→∞ 𝑎𝑠 𝑛→∞.  

 

CONCLUSION  

We conclude that, by theorems 3.1 and 3.3, either Mann 

or Ishikawa iterates can be used to approximate the fixed 

point for multi-valued quasi-contractive mapping in real 

uniformly smooth Banach space with modulus of 

smoothness of power type q > 1. (4.2) Theorems 3.1 and 

3.3 extends Theorem [6] of Sastry and Babu [5] from 

Hilbert space to more general Banach space. (4.3) 

Theorems 3.1 and 3.3 extends Theorems 1 and 2 of 

Chidume and Osilike [4] from single valued maps to 

multi-valued maps. Fixed Point Iterations for Multi-

valued Mapping in Uniformly Smooth Banach Space 9. 
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